Finite Element Prediction and Experimental Verification of the Failure Pattern of Proximal Femur using Quantitative Computed Tomography Images

نویسندگان

  • T Majid Mirzaei
  • Saeid Samiezadeh
  • Abbas Khodadadi
  • Mohammad R. Ghazavi
چکیده

This paper presents a novel method for prediction of the mechanical behavior of proximal femur using the general framework of the quantitative computed tomography (QCT)-based finite element Analysis (FEA). A systematic imaging and modeling procedure was developed for reliable correspondence between the QCT-based FEA and the in-vitro mechanical testing. A speciallydesigned holding frame was used to define and maintain a unique geometrical reference system during the analysis and testing. The QCT images were directly converted into voxel-based 3D finite element models for linear and nonlinear analyses. The equivalent plastic strain and the strain energy density measures were used to identify the critical elements and predict the failure patterns. The samples were destructively tested using a specially-designed gripping fixture (with five degrees of freedom) mounted within a universal mechanical testing machine. Very good agreements were found between the experimental and the predicted failure patterns and the associated load levels. Keywords—Bone, Osteoporosis, Noninvasive methods, Failure Analysis

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method

Introduction: Because of the importance of vertebral compressive fracture (VCF) role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD) determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite eleme...

متن کامل

Identification of High Stress and Strain Regions in Proximal Femur during Single-Leg Stance and Sideways Fall Using QCT-Based Finite Element Model

Studying stress and strain trends in the femur and recognizing femur failure mechanism is very important for preventing hip fracture in the elderly. The aim of this study was to identify high stress and strain regions in the femur during normal walking and falling to find the mechanical behavior and failure mechanism of the femur. We developed a finite element model of the femur from the subjec...

متن کامل

Prediction of strength and strain of the proximal femur by a CT-based finite element method.

Hip fractures are the most serious complication of osteoporosis and have been recognized as a major public health problem. In elderly persons, hip fractures occur as a result of increased fragility of the proximal femur due to osteoporosis. It is essential to precisely quantify the strength of the proximal femur in order to estimate the fracture risk and plan preventive interventions. CT-based ...

متن کامل

Impact of Ct Image Deblurring on the Accuracy of Ct- Based Finite Element Modelling of the Proximal Femur

Computed Tomography (CT)-based Finite Element (FE) models of femur have been extensively validated and recently applied to clinical studies showing encouraging results [1]. Nevertheless, there remains room for improvement in the accuracy of these models. Validation of FE models against in-vitro strain measurements and failure tests have identified systematic errors at sites where the cortical s...

متن کامل

Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration.

Finite element (FE) analysis based on quantitative computed tomography (QCT) images is an emerging tool to estimate bone strength in a specific patient or specimen; however, it is limited by the computational power required and the associated time required to generate and solve the models. Thus, our objective was to develop a fast, validated method to estimate whole bone structural stiffness an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012